

A Multi-Carrier Broadband Communications Concept for ATM in the VHF Band

Presented by J. Prinz (Frequentis GmbH)

27.4.2004 ICNS Fairfax, VA

Overview

- Motivation
- Current VHF Band Situation
- Technical Baseline of Multi Carrier
- Multi-Carrier CDMA
- Transition Aspects
- B-VHF Project

Page: 2

Communication Capacity

Key for growth and major obstacle at once

Air Traffic is lacking the communications capacity that is required to cope with the expected growth!

Page: 3

Version: 1.0

According to Eurocontrol, Europe runs out of VHF radio channels around 2015!

Current VHF Band Situation

B-VHF

General Facts

- VHF COM Band (118-137 MHz) is essential for ATC
 - Narrowband systems with 25/8,33 kHz channel spacing
 - Frequency planning criteria (co-channel interference)
 - Large Frequency re-use distances
- Most channels are used for analog ATS voice communication
 - one VHF frequency per ATC sector
 - DSB-AM modulation / half duplex with 'Listen before PTT' access
 - Voice 'party line' exists between all users on a given channel
 - Some Channels are used for AOC
- Some channels are used for data exchange
 - ACARS airline's data link (~130MHz /25kHz)
 - ATS Datalink at the top of the spectrum (25kHz)
- Existing narrowband systems effectively waste precious spectrum resources!

Page: 4

Current VHF Band Situation

25 / 8.33 kHz channel spacing Only a part of the allocated channels are used Not all channels are 'seen' with full power all the time

Page: 5

Starting Facts for a New System

- Without additional communications capacity European ATM will run into difficulties by ~2015
- VHF remains an attractive candidate for a new system
 - Balance of cost of operations and radio coverage
 - Existing ground infrastructure
- Air Traffic growth demands a broadband communications technology
 - Required bandwidth for future services
 - Profit from commercial developments
 - Enable transitions in a heavily disturbed environment
 - Eurocontrol activities
 - Eurocontrol proposes to initially deploy broadband system in 5 GHz for terminal services and thus free spectrum in VHF

Page: 6

- European Commission funded activities
- Ideally, a new broadband system should share VHF resources with legacy narrowband systems!

Requirements for a New System

- Easy transition from the current analog system to a new one
- Increased communications capacity for current and future services
- Efficient radio frequency spectrum utilization
- Cost effective compared to alternative systems
- Improved communications systems security
- Increase robustness against jamming and attacks of 'phantom controllers'
- Reduce user workload
- Reduce spectrum planning criteria (e.g. re-use distance)
- At all times SAFETY FIRST

Page: 7

Broadband Approaches

W-CDMA technology

- use existing commercial technology in order to reduce cost
- need continuous spectrum which is not available, thus requiring major rearrangements
- commercial situation not clear for the envisioned time 2015

Multi Carrier technology

- use commercial technology which will be available at the time of deployment
- does not require continuous spectrum
- Higher spectrum efficiency
- Increased flexibility

Overlay

Page: 8 Version: 1.0

Multi Carrier Technology **Motivation**

Channel Channelization Guard bands Pulse length ~1/B

Data are transmitted over only one carrier

Drawbacks

- Selective Fading
- Very short pulses
- ISI is compartively long
- EQs are then very long
- Poor spectral efficiency because of band guards

 Data are shared among several carriers and simultaneously transmitted

Advantages

- Flat Fading per carrier
- N long pulses
- ISI is comparatively short
- N short EQs needed
- Poor spectral efficiency because of band guards

To improve the spectral efficiency:

Eliminate band guards between carriers use orthogonal carriers (allowing overlapping)

Page: 9 Version: 1.0

OFDMOrthogonal Frequency Division Multiplexing

Distribution of a high rate data stream on many orthogonal subcarriers with low data rate

B: Bandwidth

F_S: Subcarrier Spacingf_c: Carrier Frequency

Page:

OFDM Multi-Carrier Modulation

B-VHF

Advantages

- Increase of spectral efficiency
- Decrease of equalization complexity
- Robust against multi-path propagation effects
- Efficient modulation algorithm available (IFFT, FFT)
- System can be designed to fit requirements perfectly
 - Bandwidth
 - Transmission channel
- No continuous spectrum required
 - Sector-oriented exclusion of VHF frequencies used for DSB-AM & VDL

Page: 11

Version: 1.0

in the near-by sectors it is possible to minimize interference

Characteristics of MC-CDMA

- CDMA introduces multiple channel access
- Number of users can be exchanged with available bandwidth per user
 - flexible bandwidth assignment to users
- Robust against narrowband interferers / attacks / jamming
- Performance improvement through spreading gain
- Resistant against slow / fast frequency selective fading channel
- Reduced re-use distance
 - simple frequency planning

Page:

MC-CDMA Example

Transition Concepts (Overlay)

- B-VHF and narrowband operate in the same sector simultaneously
 - every A/C equipped with either one technology may be serviced
 - high effort to suppress close NB signals
 - minimize power level of B-VHF transmitter used by local NB
 - lowest system capacity during transition
- B-VHF restricted to selected sectors/areas (e.g. en route)
 - B-VHF equipment mandatory to enter airspace
 - lower number of stronger interferer
 - increased system capacity
- Shift terminal frequencies to different spectrum (e.g. MLS)

Future B-VHF Environment Transition Phase

Channel allocation remains unchanged for DSB-AM & VDL channels 'Distant' VHF channels can be locally re-used for the new B-VHF system

Page:

Version: 1.0

FREQUENTIS

Future B-VHF Environment

Completion Phase

DSB-AM & VDL channels progressively replaced by the new system 'Distant' VHF channels can be locally re-used for the new B-VHF system 'Old' DSB-AM / VDL equipment remains untouched

Page:

Issues to be addressed for B-VHF

- Used DSB-AM / VDL channels in a region need to be known by the system
- Avoidance of mutual interference with existing DSB-AM / VDL channels
 - adaptive Receiver/Transmitter
- Multi-user access technique for up- and downlink
 - CDMA, FDMA, TDMA
 - Sub-channel mapping to users/user groups
- Multiplexing technique e.g. for half-duplex voice/full-duplex data

Page: 17

Version: 1.0

- FDD Frequency Division Duplex
- TDD Time Division Duplex
- Simultaneous support for data & voice communications

FREQUENTIS

Europe funds B-VHF project

Research Proposal of the B-VHF consortium has been accepted

■ The European Commission is funding the B-VHF activities within the 6th Framework programme

B-VHF Project

Start 1.1.2004

■ End: 30.6.2006

■ Volume: 2,9 mio €

■ Partner: 11

Page: 18

The B-VHF Consortium

Well balanced group covering technical and operational issues

Frequentis G.m.b.H
Austria

German Aerospace Center (DLR)

NATS

Polytechnic University of Madrid
 Spain

■ Ghent University Belgium

■ BAE Systems (Operations) Ltd. UK

University of Salzburg

Austria

Scientific Generics Ltd

Lufthansa German Airlines
 Germany

Deutsche Flugsicherung GmbH (DFS)
 Germany

University of Las Palmas de Gran Canaria Spain

Page:

B-VHF runs for challenging goals

The main objectives of the B-VHF project

- Proof suitability of MC-CDMA technology
- Proof increased communications performance
- Proof flexible service applicability
- Proof increased security
- Proof of operational feasibility of deployment concept
- Proof feasibility of overlay concept in the VHF band

Page: 20

Thank you for your attention!

B-VHF Consortium Co-ordinator: johannes.prinz@frequentis.com

Page: 21 Version: 1.0

